Integration of Temporal Abstraction and Dynamic Bayesian Networks in Clinical Systems. A preliminary approach

نویسندگان

  • Kalia Orphanou
  • Elpida T. Keravnou
  • Joseph A. Moutiris
چکیده

Abstraction of temporal data (TA) aims to abstract time-points into higher-level interval con-ion of temporal data (TA) aims to abstract time-points into higher-level interval concepts and to detect significant trends in both low-level data and abstract concepts. TA methods are used for summarizing and interpreting clinical data. Dynamic Bayesian Networks (DBNs) are temporal probabilistic graphical models which can be used to represent knowledge about uncertain temporal relationships between events and state changes during time. In clinical systems, they were introduced to encode and use the domain knowledge acquired from human experts to perform decision support. A hypothesis that this study plans to investigate is whether temporal abstraction methods can be effectively integrated with DBNs in the context of medical decision-support systems. A preliminary approach is presented where a DBN model is constructed for prognosis of the risk for coronary artery disease (CAD) based on its risk factors and using as test bed a dataset that was collected after monitoring patients who had positive history of cardiovascular disease. The technical objectives of this study are to examine how DBNs will represent the abstracted data in order to construct the prognostic model and whether the retrieved rules from the model can be used for generating more complex abstractions. 1998 ACM Subject Classification I.2.1 Applications and Expert Systems

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miniTUBA: medical inference by network integration of temporal data using Bayesian analysis

MOTIVATION Many biomedical and clinical research problems involve discovering causal relationships between observations gathered from temporal events. Dynamic Bayesian networks are a powerful modeling approach to describe causal or apparently causal relationships, and support complex medical inference, such as future response prediction, automated learning, and rational decision making. Althoug...

متن کامل

Temporal Abstraction in Bayesian Networks

A current popular approach to representing time in Bayesian belief networks is through Dynamic Bayesian Networks (DBNs) (Dean & Kanazawa 1989). DBNs connect sequences of entire Bayes networks, each representing a situation at a snapshot in time. We present an alternative method for incorporating time into Bayesian belief networks that utilizes abstractions of temporal representation. This metho...

متن کامل

A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine

This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...

متن کامل

Context-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network

Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012